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Obviously, handling is extremely important in any racing car. In an
autocross car, it is critical. A poorly handling car with lots of power will not
do well at all on the typical autocross course. A Miata or CRX can usually
beat a 60’s muscle car like a Pontiac GTO even though the Goat may have
four or five times the power. Those cars, while magnificently powerful, were
designed for straight-line acceleration at the expense of cornering.

This month, we examine one aspect of handling, that of handling transient
or short-lived forces. Usually, in motor sports contexts, the word “transient”
means short-lived cornering forces as opposed to braking and accelerating
forces. In braoder contexts, it means any short-lived force.

Transients figure prominently in autocross. Perhaps the epitome of a
transient-producing autocross feature is a slalom, which requires a car and
driver to flick quickly from left to right and back again. Many courses also
feature esses, lane changes, chicanes (dual lane changes), alternating gates,



and other variations on the theme. All of these require quick cornering
response to transients. Some sports cars, like Elans, MR2’s, and X1/9’s, are
designed specifically to have such quick response. The general rule is that
these kinds of cars get you into a corner more quickly than do other kinds.
They achieve their response with low weight and low polar moment of inertia
(PMI). A chief goal of this article is to explain PMI.

Most engineering designs are trade-offs, and designing for quick transient
response is no exception. Light weight means, generally, a small engine.
Low PMI means, generally, placing the engine as close to the center of mass
(CM) as possible. So, many quick-response cars are mid-engined, further
constraining engine size. With engine size, we get into another trade-off
area: cost versus power. Smaller engines are, generally, less powerful. The
cheapest way to get engine power is with size. A big, sloppy, over-the-counter
American V8 can cheaply give you 300-400 ft-1b of torque. Getting the
same torque from a 1.6 liter four-banger can be very expensive and will put
you firmly in the Prepared or Modified ranks. But, a bigger engine is a
heavier engine, and that means a beefier (heavier) frame and suspension to
support it. Therefore, the cheap way to high torque requires sacrificing some
transient response for power. This design approach is typified by Corvettes
and Camaros. The general rule is that these kinds of cars get you out of a
corner more quickly because of the engine torque.

So, we can divide the sports car universe into the lightweight, quick-
response style camp and the ground-thumping, stump-pulling style camp.
Some cars straddle the boundary and try to be lightweight, with low PMI,
and powerful. These cars are usually very expensive because the fundamental
design compromises are pushed with exotic materials and great amounts of
engineer time. Ordinary cars are usually mostly one or the other. No one can
say which design style is “better.” Both kinds of car are great fun to drive.
There will be some courses on which quick-response type cars will have top
times and others on which the V8’s will be unbeatable. Fortunately, these
two styles of cars are usually in different classes.

Let’s back up that discussion with some physics. What is transient re-
sponse and how does it relate to polar moment of inertia?

Any object resists a change in its state of motion. If it is not moving, it
resists moving. If it is moving, it resists stopping or changing direction. The
resistance is generically called inertia. With straight line motion, inertia has
only one aspect: mass. Handling is mostly about cornering, however, not
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about straight-line motion.

Cornering is a change in the direction of motion of a car. In order to
change the direction of motion, we must change the direction in which the
car is pointing. To do that, we must rotate or yaw the car. However, the
car will resist yawing because the various parts of the car will resist changing
their states of motion. Let’s say we are cornering to the right, hence yawing
clockwise. The suspension parts and frame and cables and engine etc. etc.
in the front part of the car will resist veering to the right off their prior
straight-line course and the suspension parts and frame and differential and
gas tank etc. etc. in the rear will resist veering to the left off their prior
straight-line course. From this observation, we can ‘package’ the inertial
resistance to yawing of any car into a convenient quantity, the PMI. What
follows is a simplified, two-dimensional analysis. The full, three-dimensional
case is conceptuallly similar though more complicated mathematically.

It turns out that the general motion of any large object can be broken
up into the motion of the center of mass, treated as a small particle, and
the rotation of the object about its center of mass. This means that to do
dynamical calculations that account for cornering, we must apply Newton'’s
Second Law, F = ma, twice. First, we apply the law to all masses in the car
taken as an aggregate with their positions measured with respect to a fixed
point on the ground. Second, we apply the law individually to the massive
parts of the car with their positions measured from the CM in the car while
it moves.

Let’s make a list of all the N parts in the car. Let the variable 7 run over
all the items in the list; let the masses of the parts be m;, their positions on
the X axis of the ground coordinate grid be z; and their positions on the
Y axis be 3. We summarize the position information with vector notation,
writing a bold character, r;, for the position of the ¢-th part. Vector notation
saves us from having to write two (or three) sets of equations, one for each
coordinate direction on the grid. For many purposes, a vector can be treated
like a number in symbolic arithmetic. We must break a vector equation
apart into its constituent component equations when it’s time to do number-
crunching.

The (vector) position R of the CM with respect to the ground is just the



mass-weighted average over all the parts of the car:

N min
RH—M=Z£1m; (1)

The external forces on the car are also vectors: they have X components and
Y components. So, we write the sum of all the forces on the car with a bold
F. Similarly, the velocity of the CM is a vector. It is the change in R over
a small time, dt, divided by the time. This is written

dR
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The d/dt notation is called a derivative. In turn, the acceleration is a small
change in the velocity divided by the time:

dV  d°R
A=—=——
T )
The d?/dt? notation is called a second derivative and results from two deriva-
tives in succession.
Newton’s Second Law for the CM of the car is then
d’R
F=M—-

M i (4)
where M is the total mass of all the parts in the car. Simple, eh? This is
a differential equation, and theoretical physics is overwhelmingly concerned
with the solutions of such things. In this case, a solution is finding R given
M and F. We can also simplify the writing of the equations in general by
replacing time-derivative notations with dots: one dot for one time derivative
and two dots for two derivatives. We get

F=MR (5)

Now, we consider the parts of the car separately as they yaw (and pitch
and roll) about the CM while remaining firmly attached to the car . Let’s
write all position variables measured with respect to the coordinate grid fixed
in the car with overbars, so the vector position of the i-th mass in our list is
Ti-



However, we don’t need to use vectors (in two dimensions), because in
pure yawing motion about the CM of the car, the radial distance of each car
part from the CM remains fixed and each part has the same yaw angle as
the whole car.

Let the yaw angle of the car and its coordinate grid measured against the
ground-based, inertial coordinates be 6. As each car part is affected by forces,
it moves in a yaw-arc around the CM. A small amount of yaw is written df.
Each part moves perpendicularly to a line drawn from the part to the CM
of the car, and the distance it moves is equal to its radial distance from the
CM, 7; (nonbold: a number, not a vector), times the little amount of yaw
df. Divide by the little time over which the motions are measured, and you
have the velocity of each car part:

v w8l
Ui_r'dt = 7,0 (6)

Now, it’s easy to apply Newton’s second law. Equate the force on the i-th
part, F;, to the mass of the part times the acceleration of the part:

Fg — '.\"n.{?,;é (7)

We're almost done with the math, so hang in there. If we multiply equa-
tion 7 by 7; on both sides, the left-hand side becomes the torque of the forces
on the i-th part about the CM:

A =7iF; = miT20 (8)

Now, if we sum this equation up over all the parts in our list, we can drop
the 7 subscript:

remembering that all parts have the same 6. The reason for doing this is
that resulting equation looks lz'lie Newton’s Second Law, equation 5. If you
replace 3" m;7? with a symbol, I, the equation is identical in form:

A=T6 (10)

Physicists like to find formal equivalences amongst equations because they
can use the same mathematical techniques to solve all of the them. The
equivalences also hints at deeper insights into similarities in the Universe.
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Ok, if you haven’t already guessed it, I = ¥ m;7? is the polar moment
of inertia. To compute it for a given car, we take all the parts in the car,
measure their masses and their distances from the CM, square, multiply and
add. In practice, this is very difficult. I doubt if PMIs are measured very
often, but when they are, it is probably done experimentally: by subjecting
the car to known torques and measuring how quickly yaw angle accumulates.

We can also see that, for a given rotational torque, the acceleration of
yaw angle is inversely proportional to I. Thus, we have backed up, from first
principles, our statement that cars with low PMI respond more quickly, by
yawing, to transient cornering forces than do cars with large PMI. A car with
a low PMI is designed so that the heavy parts—primarily the engine—are as
close to the CM as possible. Moving the engine even a couple of inches closer
to the CM can dramatically decrease the PMI because it varies as the square
of the distance of parts from the CM. Since equation 10 is formally equivalent
to Newton’s Second Law, an analogous insight applies to that Law. A car
with low mass responds more quickly to forces with straight-line changes in
motion just as a car with low PMI responds more quickly to torques with
rotational changes in motion.

Why would one design a car with a high PMI? Only to get a big, powerful
engine into it that might have to be placed in the front or the rear, far from
the CM. So, take your pick. Choose a car with a low PMI that yaws very
quickly and give up on some engine power. Or, choose a car with a colossal
engine and give up on some handling quickness.



