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This month, we introduce the traction budget. This is a way of thinking
about the traction available for car control under various conditions. It
can help you make decisions about driving style, the right line around a
course, and diagnosing handling problems. We introduce a diagramming
technique for visualizing the traction budget and combine this with a well-
known visualization tool, the “circle of traction,” also known as the circle
of friction. So this month’s article is about tools, conceptual and visual, for
thinking about some aspects of the physics of racing.

To introduce the traction budget, we first need to visualize a tire in
contact with the ground. Figure 1 shows how the bottom surface of a tire
might look if we could see that surface by looking down from above. In other
words, this figure shows an imaginary “X-ray” view of the bottom surface of
a tire. For the rest of the discussion, we will always imagine that we view
the tire this way. From this point of view, “up” on the diagram corresponds
to forward forces and motion of the tire and the car, “down” corresponds
to backward forces and motion, “left” corresponds to leftward forces and
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Figure 1: The bottom surface of a tire viewed from the top as though with
“X-ray vision.”

motion, and “right” on the diagram corresponds to rightward forces and
motion.

The figure shows a shaded, elliptical region, where the tire presses against
the ground. All the interaction between the tire and the ground takes place
in this contact patch: that part of the tire that touches the ground. As the
tire rolls, one bunch of tire molecules after another move into the contact
patch. But the patch itself more-or-less keeps the same shape, size, and po-
sition relative to the axis of rotation of the tire and the car as a whole. We
can use this fact to develop a simplified view of the interaction between tire
and ground. This simplified view lets us quickly and easily do approximate
calculations good within a few percent. (A full-blown, mathematical analysis
requires tire coordinates that roll with the tire, ground coordinates fixed on



the ground, car coordinates fixed to the car, and many complicated equa-
tions relating these coordinate systems; the last few percent of accuracy in
a mathematical model of tire-ground interaction involves a great deal more
complexity.)

You will recall that forces on the tire from the ground are required to make
a car change either its speed of motion or its direction of motion. Thinking
of the X-ray vision picture, forces pointing up are required to make the car
accelerate, forces pointing down are required to make it brake, and forces
pointing right and left are required to make the car turn. Consider forward
acceleration, for a moment. The engine applies a torque to the axle. This
torque becomes a force, pointing backwards (down, on the diagram), that
the tire applies to the ground. By Newton’s third law, the ground applies
an equal and opposite force, therefore pointing forward (up), on the contact
patch. This force is transmitted back to the car, accelerating it forward. It is
easy to get confused with all this backward and forward action and reaction.
Remember to think only about the forces on the tire and to ignore the forces
on the ground, which point the opposite way.

You will also recall that a tire has a limited ability to stick to the ground.
Apply a force that is too large, and the tire slides. The maximum force that
a tire can take depends on the weight applied to the tire:

F < uW

where F is the force on the tire, p is the coefficient of adhesion (and depends
on tire compound, ground characteristics, temperature, humidity, phase of
the moon, etc.), and W is the weight or load on the tire.

By Newton’s second law, the weight on the tire depends on the fraction of
the car’s mass that the tire must support and the acceleration of gravity, g =
32.1 ft /sec?. The fraction of the car’s mass that the tire must support depends
on geometrical factors such as the wheelbase and the height of the center of
gravity. It also depends on the acceleration of the car, which completely
accounts for weight transfer.

It is critical to separate the geometrical, or kinematic, aspects of weight
transfer from the mass of the car. Imagine two cars with the same geome-
try but different masses (weights). In a one g braking maneuver, the same
fraction of each car’s total weight will be transferred to the front. In the
example of Part 1 of this series, we calculated a 20% weight transfer during
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one g braking because the height of the CG was 20% of the wheelbase. This
weight transfer will be the same 20% in a 3500 pound, stock Corvette as
in a 2200 pound, tube-frame, Trans-Am Corvette so long as the geometry
(wheelbase, CG height, etc.) of the two cars is the same. Although the ac-
tual weight, in pounds, will be different in the two cases, the fractions of the
cars’ total weight will be equal.

Separating kinematics from mass, then, we have for the weight

W = f(a)mg

where f(a) is the fraction of the car’s mass the tire must support and also
accounts for weight transfer, m is the car’s mass, and g is the acceleration of
gravity.

Finally, by Newton’s second law again, the acceleration of the tire due to
the force F applied to it is -
a=F/f(a)m

We can now combine the expressions above to discover a fascinating fact:
a=FE/f(a)m < Gpiax
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The maximum acceleration a tire can take is pg, a constant, independent
of the mass of the car! While the maximum force a tire can take depends
very much on the current vertical load or weight on the tire, the acceleration
of that tire does not depend on the current weight. If a tire can take one
g before sliding, it can take it on a lightweight car as well as on a heavy
car, and it can take it under load as well as when lightly loaded. We hinted
at this fact in Part 2, but the analysis above hopefully gives some deeper
insight into it. We note that am,, being constant is only approximately true,
because u changes slightly as tire load varies, but this is a second-order effect
(covered in a later article).

So, in an approximate way, we can consider the available acceleration
from a tire independently of details of weight transfer. The tire will give
you so many gees and that’s that. This is the essential idea of the traction
budget. What you do with your budget is your affair. If you have a tire
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that will give you one g, you can use it for accelerating, braking, cornering,
or some combination, but you cannot use more than your budget or you will
slide. The front-back component of the budget measures accelerating and
braking, and the right-left component measures cornering acceleration. The
front-back component, call it a,, combines with the left-right component, a.,
not by adding, but by the Pythagorean formula:

a=/a2+a2

Rather than trying to deal with this formula, there is a convenient, visual
representation of the traction budget in the circle of traction. Figure 2 shows
the circle. It is oriented in the same way as the X-ray view of the contact
patch, Figure 1, so that up is forward and right is rightward. The circular
boundary represents the limits of the traction budget, and every point inside
the circle represents a particular choice of how you spend your budget. A
point near the top of the circle represents pure, forward acceleration, a point
near the bottom represents pure braking. A point near the right boundary,
with no up or down component, represents pure rightward cornering accel-
eration. Other points represent Pythagorean combinations of cornering and
forward or backward acceleration.

The beauty of this representation is that the effects of weight transfer are
factored out. So the circle remains approximately the same no matter what
the load on a tire.

In racing, of course, we try to spend our budget so as to stay as close to
the limit, i.e. , the circular boundary, as possible. In street driving, we try
to stay well inside the limit so that we have lots of traction available to react
to unforeseen circumstances.

I have emphasized that the circle is only an approximate representation of
the truth. It is probably close enough to make a computer driving simulation
that feels right (I'm pretty sure that “Hard Drivin’ ” and other such games
use it). As mentioned, tire loads do cause slight, dynamic variations. Car
characteristics also give rise to variations. Imagine a car with slippery tires
in the back and sticky tires in the front. Such a car will tend to oversteer
by sliding. Its traction budget will not look like a circle. Figure 3 gives an
indication of what the traction budget for the whole car might look like (we
have been discussing the budget of a single tire up to this point, but the same
notions apply to the whole car). In Figure 3, there is a large traction circle
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Figure 2: The Circle of Traction
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Figure 3: A traction budget diagram for a poorly handling car.

for the sticky front tires and a small circle for the slippery rear tires. Un-
der acceleration, the slippery rears dominate the combined traction budget
because of weight transfer. Under braking, the sticky fronts dominate. The
combined traction budget looks something like an egg, flattened at top and
wide in the middle. Under braking, the traction available for cornering is
considerably greater than the traction available during acceleration because
the sticky fronts are working. So, although this poorly handling car tends
to oversteer by sliding the rear, it also tends to understeer during acceler-
ation because the slippery rears will not follow the steering front tires very
effectively.

The traction budget is a versatile and simple technique for analyzing and
visualizing car handling. The same technique can be applied to developing



driver’s skills, planning the line around a course, and diagnosing handling
problems.



